q-Supercongruences from Transformation Formulas

نویسندگان

چکیده

Let $$\Phi _{n}(q)$$ denote the n-th cyclotomic polynomial in q. Recently, Guo and Schlosser (Constr Approx 53:155–200, 2021) put forward following conjecture: for any odd integer $$n>1$$ , $$\begin{aligned}&\sum _{k=0}^{n-1}[8k-1]\frac{(q^{-1};q^4)_k^6(q^2;q^2)_{2k}}{(q^4;q^4)_k^6(q^{-1};q^2)_{2k}}q^{8k}\\&\quad \equiv {\left\{ \begin{array}{ll}0 \ (\mathrm{{mod}}\ [n]\Phi _n(q)^2), &{}\quad \text {if }n\equiv 1\ 4),\\ 0 [n]),&{}\quad 3\ 4). \end{array}\right. } \end{aligned}$$ where $$(a;q)_k=(1-a)(1-aq)\ldots (1-aq^{k-1})$$ $$[n]=(1-q^n)/(1-q)$$ _n(q)$$ denotes Applying ‘creative microscoping’ method several summation transformation formulas basic hypergeometric series Chinese remainder theorem coprime polynomials, we confirm above conjecture, as well another similar q-supercongruence conjectured by Schlosser.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

New Proofs of Some q-Summation and q-Transformation Formulas

We obtain an expectation formula and give the probabilistic proofs of some summation and transformation formulas of q-series based on our expectation formula. Although these formulas in themselves are not the probability results, the proofs given are based on probabilistic concepts.

متن کامل

0 Summation Formulas for the product of the q - Kummer Functions from E q ( 2 )

Using the representation of Eq(2) on the non-commutative space zz ∗−qz∗z = σ; q < 1, σ > 0 summation formulas for the product of two, three and four q-Kummer functions are derived.

متن کامل

Character Formulas for q-Rook Monoid Algebras

The q-rook monoid Rn(q) is a semisimple C(q)-algebra that specializes when q → 1 to C[Rn], where Rn is the monoid of n × n matrices with entries from {0, 1} and at most one nonzero entry in each row and column. We use a Schur-Weyl duality between Rn(q) and the quantum general linear group Uqgl(r ) to compute a Frobenius formula, in the ring of symmetric functions, for the irreducible characters...

متن کامل

Some q-Dixon-like summation formulas

We give a q-analogue of some Dixon-like summation formulas obtained by Gould and Quaintance [Fibonacci Quart. 48 (2010), 56–61] and Chu [Integral Transforms Spec. Funct. 23 (2012), 251–261], respectively. For example, we prove that

متن کامل

Ramanujan-type Supercongruences

We present several supercongruences that may be viewed as p-adic analogues of Ramanujan-type series for 1/π and 1/π 2 , and prove three of these examples.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Results in Mathematics

سال: 2022

ISSN: ['1420-9012', '1422-6383']

DOI: https://doi.org/10.1007/s00025-022-01753-x